7 Relative Newton and Smoothing Multiplier Optimization Methods for Blind Source Separation

نویسنده

  • Michael Zibulevsky
چکیده

We study a relative optimization framework for quasi-maximum likelihood blind source separation and relative Newton method as its particular instance. The structure of the Hessian allows its fast approximate inversion. In the second part we present Smoothing Method of Multipliers (SMOM) for minimization of sum of pairwise maxima of smooth functions, in particular sum of absolute value terms. Incorporating Lagrange multiplier into a smooth approximation of max-type function, we obtain an extended notion of non-quadratic augmented Lagrangian. Our approach does not require artificial variables, and preserves the sparse structure of Hessian. Convergence of the method is further accelerated by the Frozen Hessian strategy. We demonstrate efficiency of this approach on an example of blind separation of sparse sources. The non-linearity in this case is based on the absolute value function, which provides super-efficient source separation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blind Source Separation using Relative Newton Method combined with Smoothing Method of Multipliers

We study a relative optimization framework for quasi-maximum likelihood blind source separation and relative Newton method as its particular instance. The structure of the Hessian allows its fast approximate inversion. In the second part we present Smoothing Method of Multipliers (SMOM) for minimization of sum of pairwise maxima of smooth functions, in particular sum of absolute value terms. In...

متن کامل

Blind Source Separation with Relative Newton Method

We study a relative optimization framework for the quasimaximum likelihood blind source separation and relative Newton method as its particular instance. Convergence of the Newton method is stabilized by the line search and by the modification of the Hessian, which forces its positive definiteness. The structure of the Hessian allows fast approximate inversion. We demonstrate the efficiency of ...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

Blind source separation using block-coordinate relative Newton method

Presented here is a generalization of the relative Newton method, recently proposed for quasimaximum likelihood blind source separation. Special structure of the Hessian matrix allows performing block-coordinate Newton descent, which significantly reduces the algorithm computational complexity and boosts its performance. Simulations based on artificial and real data showed that the separation q...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007